Bivalve impacts on water quality: positives, negatives and unknowns

M. Lisa Kellogg

September 7, 2012

Overview

Focus:

- Chesapeake Bay
- Nitrogen
 - Bioassimilation
 - Burial
 - Denitrification

Bivalve scenarios:

- Unharvested oyster reefs
- Harvested oyster reefs
- Oyster aquaculture
- Clam aquaculture

Phosphorus and Carbon

Phosphorus

- Bioassimilation
 - Easily calculated for standing stocks
 - Rates are more complicated

Burial

- More complicated and site-specific than N
 - Fluxes of P from sediments highly variable
 - Dependent on sulfur and iron cycles

Organism	% N	% P
Amphipods	4.53	1.99
Anemones	9.17	1.33
Barnacles	0.99	0.14
Clams - mixed spp.	1.42	0.10
Clams - Mya spp.	2.38	0.28
Crabs - gravid	4.15	1.40
Crabs - not gravid	3.98	1.37
Fish - Blennies	10.86	3.84
Fish - Gobies	10.60	3.61
Fish - Skilletfish	9.37	4.59
Fish - Toad fish	11.04	3.66
Mussels - shell	0.47	0.04
Mussels - tissue	10.93	1.35
Oyster - shell	0.21	0.04
Oyster - tissue	9.27	1.26
Polychaetes worms	6.84	1.07
Shrimp - gravid	8.95	2.44
Shrimp - not gravid	9.35	2.59

Phosphorus and Carbon

	Organism	% C	% CaCO₂-C
Carbon	Amphipods	27.73	3
	Barnacles	14.55	9.24
 Bioassimilation 	Clams - <i>Mya</i> spp.	19.65	6.95
— Not equal to total carbon	Crabs	24.55	
	Fish - Blennies	43.46	
content	Fish - Gobies	43.70	
Calcium carbonate	Fish - Skilletfish	43.04	
production releases CO ₂	Fish - Toad fish	40.29	
	Mussels - shell	12.95	5.98
Snellfish respire	Mussels - tissue	46.55	
Soft tissues do contain C	Oyster - shell	12.29	11.03
	Oyster - tissue	48.56	
Burial	Polychaetes worms	35.50	

- Might result in carbon sink on natural oyster reefs (Fodrie et al. In prep)
 - Organic burial > inorganic burial
 - Reef accretion without long-term accumulation of shell
 - Intertidal sandflats: 7.1 ± 1.2 Mg C ha⁻¹ yr⁻¹
 - Shallow subtidal: -1.0 ± 0.4 Mg C ha⁻¹ yr⁻¹
 - Adjacent to salt marshes: -1.3 ± 0.4 Mg C ha⁻¹ yr⁻¹

Nitrogen Cycling on Unharvested Oyster Reefs

Adapted from: Newell RIE, Fisher TR, Holyoke RR, Cornwell JC (2005) Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In: Dame RF, Olenin S, (eds). The comparative roles of suspension feeders in ecosystems, NATO ASI Sci Ser 4 Earth Environ Sci, Springer-Verlag, Berlin, p 93–120.

Bioassimilation

- Choptank River, MD (Kellogg et al.)
- Based on average standing stock biomass
 - Restored reef 2 orders of magnitude > bioassimilation than non-restored
 - Non-oyster macrofauna 37% of total N

	Non-restored	Restored
Nitrogen (g m ⁻² ± SD)		
Oysters	0.000 ± 0.000	61.759 ± 6.082
Non-oyster macrofauna	0.254 ± 0.218	35.880 ±11.093
Total	0.254 ± 0.218	97.639 ±17.051

- Nitrogen sequestered, not removed
- Calculations of rates is more complicated

Burial

- Newell et al. (2004):
 - 10% burial of PON in biodeposits
 - Based on Boynton et al. (1995)
 - Data for Choptank River sediments, not oyster reefs specifically
- Likely varies by site and with reef characteristics
 - Deposition rates
 - Hydrodynamic patterns
 - Reef structure
 - Position within the landscape (e.g. proximity to salt marsh)

Photos: Mark Luckenbach

Denitrification

• Restored oyster reef in Choptank River (Kellogg et al.)

- Below photic zone
- Rates vary with season
- August rates high
 - 1592 µmol N m⁻² h⁻¹
- Estimated annual removal:
 - 609 kg N ha⁻¹ yr⁻¹
 - 543 lbs N acre⁻¹ yr⁻¹

Denitrification

• Experimental reefs in Onancock Creek, VA (Kellogg et al.)

- April 2012
- Shallow subtidal
- Rates vary with oyster density

Denitrification

Rates vary widely with location

- Onancock April rates
 ~2x Choptank rates
 for comparable oyster
 densities
- Piehler et al. (2011)
 - Oyster reef sediments only
 - Rates much lower than Kellogg et al.

Bioassimilation

- Occurs in oysters and associated macrofauna
- Harvest
 - Removes nutrients in oysters
 - Mortality releases nutrients
 - Some unharvested oysters killed by harvest activities
 - Can be significant mortality of associated macrofauna

Burial

- Harvest impacts:
 - Resuspends buried nutrients
 - Varies with harvest method
 - Degrades reef structure
 - Alters local hydrodynamics and reduces passive deposition
 - Reduces filtration capacity and biodeposition
 - Oysters
 - Associated organisms
 - Mussels
 - Tunicates

Denitrification

- Harvest:
 - Reduces biodeposition
 - Less organic material decomposition
 - Lower potential for denitrification
 - Reduces bioturbation

- Fewer areas were oxic and anoxic sediments are in close proximity
- Degrades reef structure
 - Reduced total surface area for microbial growth
 - Reduced complexity reduces areas of adjacent oxic and anoxic sediments
- Reduces nitrification
 - Surfaces of macrofauna can be sites of nitrification (Welsh et al.)

Oyster Aquaculture

Bioassimilation

- Maintenance
 - Kills macroalgae and macrofauna
 - Releases nutrients
- Harvest removes nutrients
 - Two sites in Potomac River, MD (Higgins et al. 2001)
 - 378 kg N ha⁻¹ per 1-2 yr
 - Oyster density = 286 76-mm oysters m⁻²
 - Assumes no mortality

Photo: Mark Luckenbach

Oyster Aquaculture

Burial

- Site-specific
 - Biodeposition rate
 - Phytoplankton density
 - Oyster density
 - Hydrodynamic regime
 - Type of aquaculture
 - Surface floats
 - Bottom racks

Photos: Mark Luckenbach

Oyster Aquaculture

Denitrification

- Can be enhanced or not
 - Laboratory study (Newell et al. 2002)
 - 20% of biodeposits denitrified if:
 - Sediments were oxygenated
 - No significant microphytobenthic community
 - No denitrification under anoxic conditions
 - Under oxic conditions with sufficient light
 - Microphytobenthic community developed
 - Absorbed inorganic nitrogen

≻ Fixed N₂

Nitrogen Cycling and Clam Aquaculture

Differs from oyster reefs

- Infaunal bivalves
 - Less enhancement of associated macrofauna
- Shallow waters in photic zone
- Covered with netting to exclude predators
 - Significant macroalgal growth
- Far higher densities than found naturally

Clam Aquaculture

Bioassimilation

- Cherrystone Creek, VA
- Clams (Condon 2006)
 - Removal of nutrients by clam harvest
- Macroalgae (Luckenbach 2008)
 - Collected data on macroalgae abundance and nutrient content on nets
 - Calculated creek-wide nitrogen bioassimilated in macroalgae

Clam Aquaculture

Burial

- Clams
 - Enhance biodeopsition
 - Varies with season (Murphy et al. ongoing studies)
 - Harvest resuspends deposits
- Macroalgae
 - Can reduce flow and enhance passive deposition
 - Net cleaning resuspends deposits

Clam Aquaculture

Denitrification

- May be enhanced or reduced
 - Likely depends on season and interactions with macroalgae (Murphy et al. ongoing studies)
 - Denitrification rates not available yet
 - Ammonia fluxes clearly influenced by presence of macroalgae
 - Summer measurements demonstrate periodic anoxia under nets

Points to Remember

- 1) Filtration ≠ nutrient removal
 - Significant portion of nutrients recycled
- 2) Calcium carbonates ≠ carbon sequestration
 - CO₂ released during formation
- 3) Location, density and season matter
 - Rates of nutrient cycling vary in space and time
 - Variances are often greater than the means
- 4) Extrapolate with caution
 - Commonly-cited values are based on data that may or may not apply to the situation at hand