Hydrologic, geologic, and geochemical effects on nutrient fluxes to Indian River Bay: Evidence from measurements at Holts Landing State Park

Holly Michael, Christopher Russoniello, Cristina Fernandez, Andrew Musetto, Kevin Myers, Deon Knights, University of Delaware
Scott Andres, Delaware Geological Survey
Kevin Kroeger, Leonard Konikow, USGS
David Krantz, Joel Banaszak, University of Toledo
John Bratton, NOAA
Submarine Groundwater Discharge (SGD)
Fresh Discharge to bays
48-59%
Total Recharge

Russoniello et al., in prep
Question: How does geology affect nutrient fluxes from groundwater to Indian River Bay?

→ Geology: Fine-grained infill over paleovalley features

- Groundwater fluxes – fresh and saline
- Groundwater salinity distributions
- Groundwater nutrient distributions...reactions?
Question: How does geology affect nutrient fluxes from groundwater to Indian River Bay?

- Geology: Fine-grained infill over paleovalley features

- Groundwater fluxes – fresh and saline
- Groundwater salinity distributions
- Groundwater nutrient distributions...reactions?

Geophysics (CHIRP, Resistivity)
Geological, hydrological, geochemical field investigation

- Holts Landing as representative study site
GEOPHYSICAL CHARACTERIZATION

Resistivity: groundwater salinity
CHIRP seismic: geologic features
Geological Characterization: Offshore chirp seismic profiling
Seismic and Resistivity Tracklines – Holts Landing
Seismic and Resistivity Tracklines – Holts Landing
Geological control of Salinity Distributions
Geological control of Salinity Distributions

David Krantz and Joel Banaszak
Continuous Resistivity Profiling

- Tow single current electrode and array of receivers
- Saline water \rightarrow low Ω, fresh water \rightarrow high Ω
Seismic and **Resistivity** Tracklines – Holts Landing
Subsurface Salinity Distribution:
Classical Conceptual Model:
Indian River Bay Conceptual Model:
Indian River Bay Conceptual Model:

- **Shore-Parallel**
 - Low-K Paleovalley Fill
 - High-K Paleochannel

- **Patch**
 - Fresh
 - Mixing Zone
 - Saline
Fresh Groundwater Discharge Mode:

- Diffuse Discharge
- Focused Discharge
HYDROLOGIC CHARACTERIZATION

Seepage Meters: Groundwater discharge
Groundwater salinity: deep and shallow
Measurements: wells, SGD, salinity
Submarine Groundwater Discharge (SGD) Measurements

Seepage Meters
SGD Measurements
SGD Flux

Flux [cm/d]

1
20
140

700+ measurements...

Russoniello et al., in prep
SGD Salinity

Average ~9% Fresh Discharge

Diffuse Discharge <50% Fresh

Focused Discharge >75% Fresh

Percent Fresh
- 0-5%
- 6-10%
- 11-25%
- 26-75%
- 76-100%

Magnitude Only
SGD Salinity

Focused Fresh Discharge
SGD Salinity

Diffuse Fresh Discharge
SGD Salinity

Diffuse Fresh Discharge
Offshore Multi-level Wells (DGS Team)
GEOCHEMICAL CHARACTERIZATION

Field Parameters (Salinity, pH, DO, ORP)
Nutrients (NO$_3$, NH$_4$, PO$_4$, Si)
Dissolved gases (N$_2$, Ar)
Nutrients and Field Parameters
Nutrients and Field Parameters
Nutrients and Field Parameters
Nitrate [uM]

Fresh wells (<0.5 ppt)
Nitrate [μM]

Shallowest Port

- Offshore Multi-level Well
- Offshore Multi-level Samplers
- Offshore Monitoring Well
- Onshore Monitoring Well
Nitrate

\[\text{uM} \]

Shallowest Port

28 25 10 32 0 50 26 200

15 306

Focused Discharge

\(~200\ \text{uM nitrate}\)
Nitrate

[5 uM]

Shallowest

Port

[28 25 10 32 50 26 200 15 -306 126 -224 80 436 5]

Diffuse Discharge (longer flowpaths) <50 uM nitrate

High Nitrate

Mixing Zone

Low Nitrate?
Indian River Bay Conceptual Model:
Indian River Bay Conceptual Model:
Indian River Bay Conceptual Model:

Saline Exchange → Ammonium Release

Decomposing Organics (High Ammonium)

Fresh

Mixing Zone

Saline
Nutrients tied to flowpaths...
beginning smaller-scale variable-density modeling:

Fernandez et al., *in prep*
Nutrients tied to flowpaths... beginning smaller-scale variable-density modeling:

SEAWAT Model

Shore-perpendicular shoreline

V.E= 30

Fernandez et al., in prep
Summary: Indian River Bay, embayment scale

- Geologic features (paleochannels and paleovalley fill) affect:
 - Flowpaths
 - Salinity distributions
 - Fresh groundwater discharge patterns, rates

- Flowpaths likely affect nitrogen transformations, fluxes
 - Mode of SGD may determine nitrate concentrations (longer flowpaths, mixing transform \([\text{NO}_3^-]\)?)
 - Gases evidence of denitrification along flowpaths – work in progress...
 - ~ High ammonium (and low nitrate) in saline porewater

Next... Flowpath geochemistry ➔ Transformations Smaller-scale modeling
Implications?

⇒ Role of heterogeneity in reducing (or not) nutrient fluxes

⇒ Importance of hydrogeology and geology in estimating fluxes (not just groundwater ‘endmember’ multiplied by fresh SGD)

⇒ Potential role of humans in changing this...i.e. dredging, upland management and land-use changes
Thank You!

Funding:
National Science Foundation
ORAU Powe Award

Collaborators:
John Bratton, NOAA
Scott Andres, Delaware Geological Survey
David Krantz, University of Toledo
Lenny Konikow & Kevin Kroeger, USGS

Students:
Christopher Russoniello, UD Graduate Student
Cristina Fernandez, UD Graduate Student
Joel Banaszak, U. Toledo Graduate Student
Andrew Musetto, UD Undergraduate Student
Kevin Myers, UD Undergraduate Student
Deon Knights, UD Undergraduate Student
Nutrients tied to flowpaths...
beginning smaller-scale variable-density modeling:

SEAWAT
Summary

- Seismic, Resistivity → Low-permeability paleochannel infill causes offshore freshwater plume, mixing zone
- Seepage meters, Shallow porewater salinity → Diffuse fresh SGD occurs around edge of paleochannel infill
- Focused fresh SGD occurs at locations away from paleochannel features
- Nitrate high onshore, decreases offshore beneath infill.
- ~ High ammonium (and low nitrate) in saline porewater
- Seasonal, Tidal fluctuations small, perhaps greater near surface?
- Mode of SGD may control nitrate concentrations (longer flowpaths, mixing transform [NO$_3^-$]?)
- Gases evidence of denitrification along flowpaths – work in progress...
Summary

- Seismic, Resistivity → Low-permeability paleochannel infill causes offshore freshwater plume, mixing zone
- Seepage meters, Shallow porewater salinity → Diffuse fresh SGD occurs around edge of paleochannel infill
- Focused fresh SGD occurs at locations away from paleochannel features
- Nitrate high onshore, decreases offshore beneath infill.
- ~ High ammonium (and low nitrate) in saline porewater
- Seasonal, Tidal fluctuations small, perhaps greater near surface?
- Mode of SGD may control nitrate concentrations (longer flowpaths, mixing transform [NO$_3^-$]?)
- Gases evidence of denitrification along flowpaths – work in progress...

Next... Flowpath geochemistry → Transformations
Smaller-scale modeling
Nitrate

concentration (μmol/L)

salinity ‰

Multilevel wells
Monitoring Wells
Ammonium

concentration (μmol/L)
salinity ‰

(1.5, 478)

Multilevel Wells
Monitoring wells
Evidence of Denitrification?
→ Dissolved Gases

\[\text{Ar (\mu M)} \]

\[\text{N2 (\mu M)} \]

- **ASW 0 salinity**
- **ASW 29 salinity**
- **1 to 3 salinity, shore parallel CMT3,4,5**
- **29 salinity, CMT1**
- **1 to 2 salinity CMT2,6,7,8**
- **4 to 9 salinity CMT2,6,7,8**
- **14 to 15 salinity CMT2,6,7,8**
- **18 to 19 salinity CMT2,6,7,8**
- **21 to 25 salinity CMT2,6,7,8**
- **ASW salinity 0**
- **ASW + excess air at 12 C**
- **ASW salinity 29**
Evidence of Denitrification? → Dissolved Gases

Expected Groundwater Equilibrium with atmosphere

K. Kroeger
Average ~9% Fresh Discharge

Diffuse Discharge <10% Fresh

Focused Discharge >75% Fresh

SGD Salinity
SGD Salinity

Average ~9% Fresh Discharge

Diffuse Discharge <50% Fresh

Focused Discharge >75% Fresh